Variateur numérique pour moteur Brushless Série SMD 230-A

GUIDE D'INSTALLATION

Lire attentivement ce manuel avant la mise en route et respecter toutes les indications avec le symbole :

SMD230-A-GI-2329-FR.docx

Table des Matières

I.	INTRO	ODUCTION	1
	I.1 DE	ESCRIPTION DU VARIATEUR SMD	2
	I.1.1	Général	
	I.1.2	Données techniques	
II.	INST/	ALLATION	5
	II.1	General	5
	II.2	VUE DE FACE	
	II.3	VUE DE DESSUS	
	II.4	VUE DE DESSOUS	
	II.5	MONTAGE	
	II.6	AFFECTATION ET BROCHAGE DES CONNECTEURS	
	II.6.1		
	II.6.2	•	
	II.6.3	3 X3 – I/O : Entrées/Sorties logiques	
	II.6.4		
	II.6.5	5 X5 – BUS: Bus de communication	
	II.6.6	6 X6 – AUX : Alimentation auxiliaire 24Vdc	13
	II.6.7	7 X7 – POWER : Alimentation 230Vac	13
	II.6.8	3 X8 – FEEDBACK : Feedback position moteur	14
	II.6.9		14
	II.6.1		
	II.6.1	1 X11 – BALLAST : Résistance de freinage externe	
	II.7	CABLES	
	II.8	PROTECTION / SCHEMAS DE RACCORDEMENT	
	II.8.1	v	
	II.8.2	· · · · · · · · · · · · · · · · · · ·	
	II.9	VERIFICATION AVANT MISE EN SERVICE	19
Ш	. AFFIC	CHEUR STATUS 7 SEGMENTS	20
	III.1	SEQUENCE D'INITIALISATION	REUR ! SIGNET NON DEFINI.
	III.2	SMD EN FONCTIONNEMENT	21
	III.3	PHASE SPECIFIQUE	21
	III.4	MESSAGES D'ERREUR	22
	III.4.		
	III.4		
	III.4	•	
	III.4.	· • • • • • • • • • • • • • • • • • • •	
	III.4	5 Erreur du bootloader	26
11.7	DE\//C	CION	27

I. INTRODUCTION

Avant la première mise en service de l'installation, veuillez lire les informations suivantes afin d'éviter des dommages corporels et/ou matériels.

Le montage, le raccordement, la mise en service et la maintenance de l'appareil ne peuvent être réalisés que par des personnes qualifiées et doivent obéir aux normes nationales et internationales (DIN, VDE, EN, IEC ...). Le non-respect de ces normes peut engendrer de graves dommages matériels.

De plus, il est indispensable de respecter les instructions de sécurité. Des blessures et dommages corporels peuvent résulter d'une méconnaissance de ces instructions de sécurité.

Les règles de prévention des accidents sont les suivantes :

VDE 0100	Spécification pour l'installation des systèmes de puissance jusqu'à 1000V						
VDE0113	Equipement électrique de machines						
VDE0160	Equipement de systèmes de puissance avec des composants électroniques						

- Ne jamais ouvrir l'appareil.
- Des hautes tensions pouvant être dangereuses sont appliquées à l'intérieur du variateur et des connecteurs. Pour cela, couper l'alimentation réseau du variateur et attendre au moins 5 minutes pour que les condensateurs se déchargent avant de débrancher un connecteur.
- Ne jamais débrancher ou brancher de connecteurs sous tension.
- L'appareil comporte des surfaces très chaudes.

Ne pas manipuler l'appareil de façon inappropriée sous peine de détérioration de certains composants électroniques par décharges électrostatiques.

Toutes les mesures existantes ont été prises afin de garantir l'exactitude et l'intégrité de la documentation présente, toutefois celle-ci peut contenir des erreurs. Aucune responsabilité ne sera assumée par SERAD pour tout dommage causé par l'utilisation du logiciel et de la documentation ci-jointe.

Nous nous réservons le droit de modifier sans préavis tout ou partie des caractéristiques de nos appareils

R2329 - 1 - SERAD SAS

I.1 Description du variateur SMD

I.1.1 Général

Les variateurs série SMD sont spécialement adaptés pour des performances dynamiques élevées.

Ils possèdent une alimentation intégrée et un filtre secteur en option.

Ils peuvent être utilisés pour contrôler le couple moteur, la vitesse ou la position en fonction de leur mode de fonctionnement.

Différentes configurations de bus de terrain sont disponibles telles que MODBUS, CANopen et EtherCAT qui permettent l'utilisation des variateurs dans les systèmes en réseau.

En version intelligente, grâce au langage pseudo-basic facile à programmer, au noyau multitâche, aux fonctions de contrôle MOTION et aux fonctions API intégrées, ils sont parfaitement adaptés à une large gamme d'applications.

I.1.2 Données techniques

Alimentation :	90 à 250V AC monophasé, régime de neutre TN ou TT Courant de fuite à la terre (sur les modèles avec filtre réseau) : 3,2 mA Régime de neutre IT interdit				
Alimentation auxiliaire :	24 V DC ±10%, 0.2A typique, 0.7A max				
Filtre réseau * :	Filtre EMC				
Fréquence de découpage :	10 kHz, commande sinusoïdale du moteur				
Tension DC bus:	310V à 400V				
Dissipation thermique :	Etage de puissance désactivée SMD230/01: 15W max SMD230/02: 20W max SMD230/05: 20W max Etage de puissance activée, au courant nominal SMD230/01: 23W SMD230/02: 30W SMD230/05: 50W				
Absorption :	Energie absorbable par le variateur sans résistance de freinage : 11J				
Résistance de freinage :	Hacheur de freinage intégré, Résistance de freinage externe en option : Valeur mini Valeur typique P.continue maxi P.impulsionnelle maxi 40Ω 75Ω 1,8kW 4,6kW				
Protection:	Court-circuit entre phases, phase à la terre, sur courant, I2t Surtension, sous-tension Défaut feedback moteur				
Retour moteur * :	Tamagawa serial Bits par tour : Max 16bits signé EnDat 2.2 EnDat 2.2 Bidirectionnel Multi tours : Max 32bits signé Bits total (Multi tours + 1 tours) : 64 bits Biss Biss C unidirectionnel Multi tours : Max 32bits signé Bits total (Multi tours + 1 tours) : 64 bits Ssi Fréquence : 200KHz – 50MHz (Fmin > (NBits + 1.5) / 50μs) Multi tours : Max 32bits signé Bits total (Multi tours + 1 tours) : 64 bits Resolver Signal Sin/Cos différentiel Excitation : +/-10Vpp 10KHz – 30mA max Rapport de transformation : 0.2 - 2 Incrémental Quadrature A-B, Avec ou sans index/Halls, Step/Dir, CW/CCW				

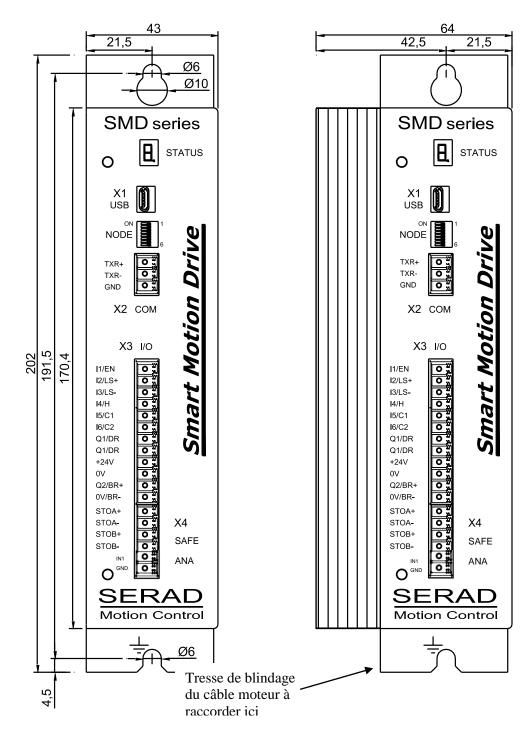
	П	T. DOVOZ 1:007 V. II				
		Ligne RS485 différentielle				
		Fréquence max A-B : 25MHz (avant quadrature)				
		Temps minimum impulsion index : 200ns				
		Halls : Différentiel (Positive/Négative)				
	Incrémental	Quadrature A-B, Avec ou sans index, Step/Dir, CW/CCW				
Codeur maître		Ligne RS485 différentielle				
auxiliaire :		Fréquence max A-B : 25MHz (avant quadrature)				
		Temps minimum impulsion index : 200ns				
	Virtuel	Drive Basic				
	USB					
Communication*:		DDBUS RTU slave				
0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		OS 402, SDO, PDO				
	EtherCAT Co					
		entrées rapides I5 et I6)				
		24V DC, 10mA par entrée standard et 15mA par entrée rapide				
Entrées logiques :		ue 0 : de 0 à 5 V				
		ue 1 : de 8 à 30 V				
		action des entrées normal : 100µs Max				
		la capture sur les entrées rapide : 1.5µs Max				
	2 sorties	1077.1 / 1077				
Sorties logiques :	Q1 : Relais, 48V dc / 48V ac, 3A max					
		ue PNP 24Vdc, 1A max				
	1 voie :	. / . 0 10 77				
	Tension d'entrée : 0 10 V					
Entrée analogique :	Tension d'entrée maxi : 12 V					
		'entrée : 18 Kohm				
	Résolution :	12 bit				
Diagnostic :	Afficheur de STATUS 7 segments					
	STO (Safa T	Orque Off), Catégorie 4 / SIL3 / PL e				
Safety*:		nA typique par entrée				
		DSP 200 MHz				
		ASH pour stockage Operating System et programmes				
Architecture :		AM pour stockage des variables et paramètres				
	Noyau temps	réel multitâches				
	Boucle de co	·				
Boucles de régulation :	Boucle de vit	·				
		sition: 100 µs				
		, vitesse et positionnement				
Modes de		OTION (mouvement absolu, relatif et infini, profil en S et				
fonctionnement :	Sin²)					
ionenonnement.		OTION avancées (arbre électrique, boîte à cames, profil de cames,				
	synchronisation					
	De base : 0 à					
Température		: si armoire ventilée : 0 à +50°C. +50°C à +60°C avec une réduction				
de service :	de puissance de					
m / ·	SMD230 2A	et 1A: 0 à 50°C				
Température	-10 à 70°C					
de stockage :						
Indice de protection :	IP 20					
Poids	SMD 230/01	: 0.9 kg SMD 230/02: 1.2 kg SMD 230/05: 1.2 kg				

^{*} Pour la série SMD 230, suivant modèle

Variateur	Courant nominal	('ourent crate ('2c)		Dimensions l x h x p (mm)	
SMD 230 / 01	1,25 Arms	3,75 Arms	0,4 kVA	43 x 202 x 134	
SMD 230 / 02	2,5 Arms	7,5 Arms	0,75 kVA	64 x 202 x 134	
SMD 230 / 05	5 Arms	10 Arms	1,5 kVA	64 x 202 x 134	

II. INSTALLATION

II.1 Général



Il est important de respecter les points suivants :

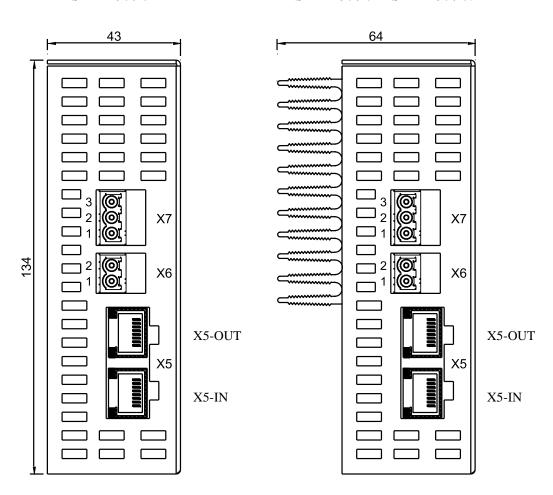
- ➤ Une mauvaise mise à la terre du variateur peut endommager ses composants électroniques.
- Le variateur doit être installé verticalement pour assurer un refroidissement naturel par convection.
- ➤ Il doit être à l'abri de l'humidité, des projections de liquides quelconques, de la poussière. Les câbles résolveur, moteur, codeur doivent être blindés, la tresse étant reliée de chaque côté au châssis.
- Tous les câbles de communication et les câbles entrées/sorties doivent être séparés et éloignés des câbles de puissance.
- Le câble USB entre le variateur et le PC doit être blindé. Il doit être débranché du variateur lorsqu'il n'est plus utilisé.
- ➤ Il faut prévoir sur toutes les sorties statiques (Q2) des diodes de roue libre sur les charges inductives. Ces diodes doivent être placées le plus près possible de la charge. Les conducteurs d'alimentation et de signaux ne doivent pas être le siège de surtensions.
- Les normes de sécurité imposent un réarmement manuel après un arrêt provoqué soit par :
 - Une coupure secteur
 - Un appui sur l'arrêt d'urgence
 - Un défaut variateur.
- > Sur tout défaut grave, il est obligatoire de couper l'alimentation de puissance du variateur.
- La sortie Q1 « Drive ready » doit être reliée en série dans la boucle d'arrêt d'urgence.
- Dans le cas d'un axe fini, les capteurs de limitation de la course doivent être reliés sur les entrées fin de course ou en série dans la boucle d'arrêt d'urgence
- > Si le variateur est configuré en mode position, le paramètre « Erreur de poursuite maxi» doit être réglé.
- > Si le variateur contient un programme applicatif développé à partir du langage Drive Studio, relier l'information « Puissance armoire électrique OK » sur une entrée automate et la traiter dans une tâche basic non bloquante de sécurité. Sur détection d'une erreur de poursuite, le variateur passe en boucle ouverte et ouvre la sortie Q1 «drive ready».. Si une autre action est demandée, vous devez utiliser l'instruction SECURITY.

II.2 Vue de face

STATUS Afficheur 7 segments pour diagnostic

NODE Adresse Node

X1 USB Port USB pour communication avec un PC


X2 COM Port série RS485

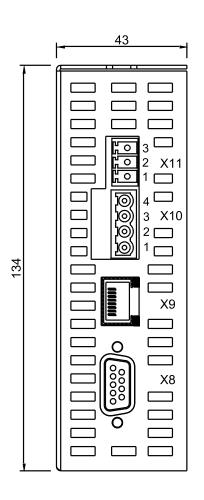
X3 I/O Entrées / Sorties logiques

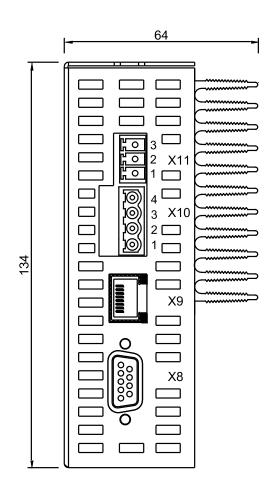
X4 SAFE-ANA Entrées SAFETY STO, Entrée analogique

II.3 Vue de dessus

Modèle: SMD 230 / 01 SMD 230 / 02 - SMD 230 / 05

X5 BUS Communication (CANopen, EtherCAT)
 X6 AUX Alimentation auxiliaire 24 Vdc
 X7 POWER Alimentation monophasée 230 Vac




La tension sur le connecteur X7 peut atteindre 230Vac!

II.4 Vue de dessous

Modèle: SMD 230 / 01

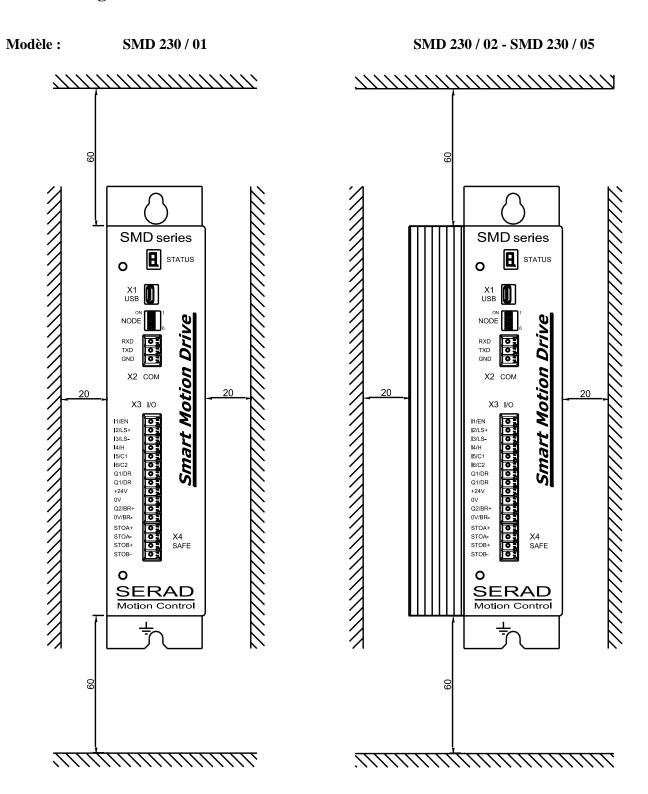
SMD 230 / 02 - SMD 230 / 05

X8 FEEDBACK Feedback moteur (résolveur/ Tamagawa/ incrémental)

X9 MASTER Codeur maître (codeur incrémental / stepper)

X10 MOTOR Alimentation moteur

X11 BALLAST Résistance de freinage externe



Attention au câblage des connecteurs X10 and X11.

Une mauvaise connexion peut endommager gravement le variateur. X10 et X11 comportent des tensions dangereuses (320V).

Attendre au moins 5 minutes pour permettre aux condensateurs de se décharger avant de retirer le connecteur.

II.5 Montage

Il est possible d'installer plusieurs variateurs les uns à côté des autres en respectant les espaces de séparation pour une bonne convection naturelle (laisser un espace minimum de 20 mm entre deux variateurs). Laisser un espace supérieur à 60 mm au-dessus et dessous des variateurs pour le passage des câbles et la mise en place des connecteurs

II.6 Affectation et brochage des connecteurs

II.6.1 X1 - USB : Port USB pour communication avec un PC

Type de connecteur (côté appareil): Mini USB femelle

N°	Nom	Type	Description
1	VCC	Inp	V Bus
2	USB D-	Inp/Out	USB Data -
3	USB D+	Inp/Out	USB data +
4	NC		
5	GND		0V

II.6.2 X2 – COM : Port série RS485

Type de connecteur (côté appareil): 3 points au pas de 3.81 mm

N°	Nom	Type	Description
1	TXR+	Inp/Out	Transmission & réception des données + (A)
2	TXR-	Inp/Out	Transmission & réception des données - (B)
3	GND		0V

• Adressage en RS485 :

Numéro d'adresse NodeID = (conversion binaire en décimale des Dipswitchs 1,2,3,4,5,6) + 1

Node ID N°	1	2	3	4	5	6	7	8	9	10	•••	63	Reserved
Dip 1	OFF	ON		OFF	ON								
Dip 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF		ON	ON
Dip 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF		ON	ON
Dip 4	OFF	ON	ON		ON	ON							
Dip 5	OFF		ON	ON									
Dip 6	OFF		ON	ON									

Note : Si le variateur intègre également un bus de communication CANopen, le dip switch n°6 est utilisé pour activer la résistance de terminaison du CANopen et n'est pas disponible pour la sélection du NodeID.

Note : Si nécessaire, la résistance de terminaison du bus RS485 de 120Ω doit être directement raccordée sur le connecteur X2 entre les pins 1 et 2.

II.6.3 X3 – I/O: Entrées/Sorties logiques

Type de connecteur (côté appareil): 12 points au pas de 3.81 mm

N°	Nom	Type	Description		
1	I1 / EN	Inp	Entrée 1 / Fonction spécifique : Enable		
2	I2 / LS+	Inp	Entrée 2 / Fonction spécifique : Fin de course +		
3	I3 / LS-	Inp	Entrée 3 / Fonction spécifique : Fin de course -		
4	I4 / H	Inp	Entrée 4 / Fonction spécifique : Capteur d'origine		
5	I5 / C1	Inp	Entrée 5 / Fonction spécifique : Capture 1 (entrée rapide)		
6	I6 / C2	Inp	Entrée 6 / Fonction spécifique : Capture 2 (entrée rapide)		
7	Q1 / DR	Out	Sortie 1 / Fonction spécifique : variateur prêt Relais contact NO entre les bornes 7 et 8		
8	Q1 / DR	Out	Relais contact NO entre les bornes 7 et 8		
9	+24V	Inp	24Vdc pour l'alimentation de la sortie Q2		
10	0V		0V entrées / sorties logiques		
11	Q2 / BR+	Out	Sortie 2 / Fonction spécifique : Frein moteur + Type PNP 24Vdc, 1A max		
12	0V / BR-		0V / Frein moteur -		

II.6.4 X4 – SAFE - ANA : Entrées Safety STO – Entrée analogique

Type de connecteur (côté appareil) : 6 points au pas de 3.81 mm

Nom	Type	Description
1 CTO A . I.		Entrée A Safe Torque Off
310A+	шр	Doit être maintenue à 24V (60 mA typique)
STO A	Inn	Entrée A Safe Torque Off
310A-	шр	Doit être maintenue à 0V
CTOD :	Inn	Entrée B Safe Torque Off.
3 STOB+ Inp		Doit être maintenue à 24V (60 mA typique)
CTOD	Inn	Entrée B Safe Torque Off
310b-	шр	Doit être maintenue à 0V
IN1	Inp	Entrée analogique
GND		0V analogique
	STOA+ STOB+ STOB- IN1	STOA+ Inp STOA- Inp STOB+ Inp STOB- Inp IN1 Inp

II.6.5 X5 - BUS: Bus de communication

Type de connecteur (côté appareil): RJ45

	CAN	Open	Eth	erCAT
N°	Nom	Type	Nom	Type
1	CAN_H	Inp/Out	TD+	Out
2	CAN_L	Inp/Out	TD-	Out
3	CAN_GND		RD+	Inp
4				
5				
6			RD-	Inp
7	CAN_GND			
8				
	Shield		Shield	

• Adressage en CANopen :

Numéro d'adresse NodeID = (conversion binaire en décimale des Dipswitchs 1,2,3,4,5) + 1

La validation des résistances de terminaison du bus (120Ω) se fait en activant le dipswitch 6 sur la position ON.

Node ID N°	1	2	3	4	5	6	7	8	9	10	:	31	Réservé
Dip 1	OFF	ON		OFF	ON								
Dip 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF		ON	ON
Dip 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF		ON	ON
Dip 4	OFF	ON	ON		ON	ON							
Dip 5	OFF		ON	ON									

• Adressage en EtherCAT :

Numéro d'adresse NodeID = (conversion binaire en décimale des Dipswitchs 1,2,3,4,5,6) + 1

Node ID N°	1	2	3	4	5	6	7	8	9	10	•••	63	Réservé
Dip 1	OFF	ON		OFF	ON								
Dip 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF		ON	ON
Dip 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF		ON	ON
Dip 4	OFF	ON	ON		ON	ON							
Dip 5	OFF		ON	ON									
Dip 6	OFF		ON	ON									

Le numéro d'adresse (NodeID) est pris en compte par le variateur uniquement à la mise sous tension de l'alimentation auxiliaire ($connecteur\ X6$).

II.6.6 X6 – AUX : Alimentation auxiliaire 24Vdc

Type de connecteur (côté appareil) : 2 points au pas de 5.08 mm

N°	Nom	Type	Description
1	XGND		0V
2	+24V	Inp	Alimentation carte, backup position moteur

II.6.7 X7 – POWER: Alimentation 230Vac

Type de connecteur (côté appareil) : 3 points au pas de 5.08 mm

N°	Nom	Type	Description
1	L1	Inp	Phase L1
2	N	Inp	Neutre
3	PE		Terre réseau

Régime de neutre TN ou TT seulement. Le régime de neutre IT est strictement interdit.

Attention au câblage du connecteur X7. Une mauvaise connexion peut gravement endommager le variateur. Des tensions dangereuses sont présentes sur X7.

II.6.8 X8 – FEEDBACK: Feedback position moteur

Type de connecteur (côté appareil): Sub-D 9/25 femelle

	Codeur Tamagawa		Résolveu	Incrément	al	EnDat 2.2		
N°	Nom	Type	Nom	Type	Nom	Type	Nom	Type
1	SD+	Inp/Out	S2 (sinus+)	Inp	A	Inp	Data	Inp/Out
2	SD-	Inp/Out	S1 (cosinus+)	Inp	A/	Inp	/Data	Inp/Out
3	GND		GND		В	Inp	GND	
4			R1 (référence+)	Out	B/	Inp		
5	°CM+ (sonde thermique)	Inp	°CM+ (sonde thermique)	Inp	Z	Inp	°CM+ (sonde thermique)	Inp
6			S4 (sinus-)	Inp	Z/	Inp	Clk	Out
7	+5Vdc (250mA max*)	Out	S3 (cosinus-)	Inp	HALL U	Inp	+5Vdc (250mA max*)	Out
8	°CM- (sonde thermique)	Inp	°CM- (sonde thermique)	Inp	HALL U/	Inp	°CM- (sonde thermique)	Inp
9			R2 (référence-) = GND	Out	HALL V	Inp	/Clk	Out
10					HALL V/	Inp		
11					HALL W	Inp		
12					HALL W/	Inp		
13					°CM+ (sonde thermique)	Inp		
14					+5Vdc (250mA max*)	Out		
15					GND			
	Shield		Shield		Shield		Shield	

^{*250}mA maximum cumulé avec la sortie 5V du codeur MASTER X9

II.6.9 X9 – MASTER: Codeur maître

Type de connecteur (côté appareil): RJ45

	Codeur incrémen	tal	Stepper	
N°	Nom	Type	Nom	Type
1	A	Inp	Pulse	Inp
2	Α/	Inp	Pulse/	Inp
3	В	Inp	Direction	Inp
4	Z/	Inp		
5	Z	Inp		
6	B/	Inp	Direction/	Inp
7	+5Vdc (250mA max*)	Out	+5Vdc (250mA max*)	Out
8	GND		GND	
	shield		shield	

^{*250}mA maximum cumulé avec la sortie 5V du codeur FEEDBACK X8

II.6.10 X10 – MOTOR: Alimentation moteur

Type de connecteur (côté appareil): 4 points au pas de 5.08 mm

N°	Nom	Type	Description
1	PE		Terre moteur
2	U	Out	Phase U moteur
3	V	Out	Phase V moteur
4	W	Out	Phase W moteur

Le câble moteur blindé doit arriver directement sur les bornes du connecteur variateur. Tresse de blindage à relier côté variateur sur la vis prévue à cet effet (voir II-2 "Vue de face").

Attention au câblage du connecteur X10. Une mauvaise connexion peut endommager gravement le variateur. X10 comporte des tensions dangereuses.

II.6.11 X11 – BALLAST : Résistance de freinage externe

Type de connecteur (côté appareil) : 3 points au pas de 5.08 mm

N°	Nom	Type	Description
1	DC BUS -	Out	DC Bus (référence)
2	RB	Out	Résistance de freinage
3	DC BUS +	Out	DC Bus (320 Vdc)

La résistance de freinage externe doit être connectée entre les bornes 2 et 3 (RB et DC BUS+).

Pour les modèles SMD 230 / 02 et SMD 230 / 05, la résistance de freinage externe peut être montée sur le radiateur en utilisant les deux vis fournies.

Si vous perdez les vis prévues pour la fixation de la résistance de freinage externe, vous devez uniquement utiliser des vis M4 x 6, sinon risque d'endommager le variateur.

II.7 Câbles

Nous vous proposons tous les câbles avec connecteurs montés. Ceux-ci sont disponibles en différentes qualités (standard, compatible chaîne porte câble, etc.). Nous consulter.

• Câble feedback retour position moteur (codeur ou résolveur), X8 :

Câble avec blindage général, 4 paires torsadées 0.25 mm²
La continuité de la tresse de blindage au châssis doit être parfaitement réalisée.
Raccorder de la tresse de masse au SUBD résolveur comme sur la photo ci-dessous :

Il est fortement conseillé d'utiliser un câble avec un fil de terre supplémentaire et de le souder au châssis du Sub-D et cela de part et d'autre du câble.

Longueur maxi, feedback codeur : 17 m Longueur maxi, feedback résolveur : 30 m

• Câble puissance moteur, X10 :

Câble avec blindage général, 4 fils, 1.5 mm²

Tresse de blindage à relier côté variateur sur la vis prévue à cet effet (voir II-2 "Vue de face").

II.8 Protection / Schémas de raccordement

Variateur	Tension d'entrée	Courant d'entrée max	Protection : Disjoncteur courbe C	Section câble
SMD 230 / 01	230V monophasé	3 A	10 A maxi	1,52
SMD 230 / 02	230V monophasé	7 A	10 A maxi	1,52
SMD 230 / 05	230V monophasé	14 A	10 A maxi	1,52

Attention: le courant d'appel peut atteindre 10A pendant 20ms.

Toutes les connexions doivent être réalisées par des personnes qualifiées. Les câbles doivent être testés avant d'être connectés, toute mauvaise connexion peut entraîner de graves dysfonctionnements

Mettre hors tension le variateur avant d'insérer ou de retirer les connecteurs.

Connecter la terre du moteur au point de terre du variateur (borne 1 du connecteur X10) avant toute mise sous tension.

Pour les câbles blindés, raccorder la tresse au châssis à chaque extrémité via les capots des connecteurs (pour les SUBD) .

Toute bobine (par exemple le frein de parking) alimentée par courant continu (24Vdc) doit être obligatoirement pourvue d'une diode de roue libre (ex: 1N4007) afin d'empêcher des surtensions (plus de 80V) qui risqueraient de détériorer l'ensemble de l'électronique.

II.8.1 Sortie frein moteur

A l'aide de la fenêtre de configuration des paramètres de Drive Studio, sélectionnez la fonction Frein pour la sortie logique Q2.

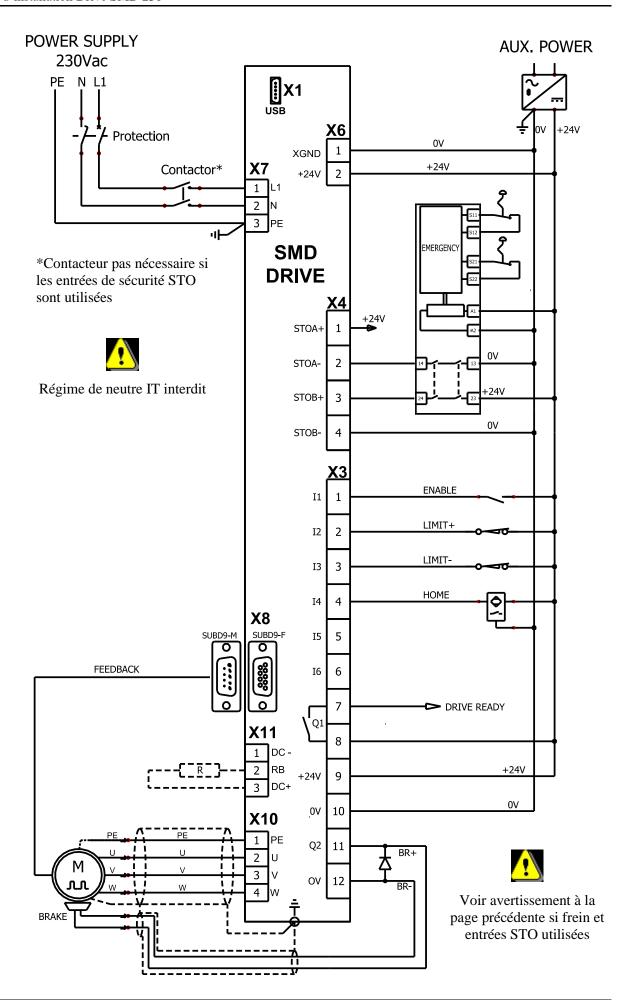
La sortie Q2 est de type PNP 24V, 1A max.

Il est obligatoire d'utiliser une diode de protection, sinon les composants du variateur peuvent être endommagés.

II.8.2 Précautions sur la fonction de sécurité STO

Dans le cas d'un variateur intégrant la fonction sécuritaire STO (option), s'il n'y a plus de tension sur au moins l'une des deux entrées SAFETY mais que plusieurs bras de pont IGBT sont endommagés, on peut observer un à-coup brutal de faible amplitude sur le moteur. L'amplitude maximale de cet à-coup dépend du nombre de paires de pôles du moteur : $\phi = 360^{\circ}$ / Nb Paires x 2, par exemple avec un moteur 3 paires de pôles on peut avoir un déplacement de 60° .

Si le moteur était en mouvement avant l'action du dispositif de sécurité anti-redémarrage, il passe en roue libre et s'arrête plus ou moins rapidement suivant l'inertie de la charge et les frottements mécaniques.

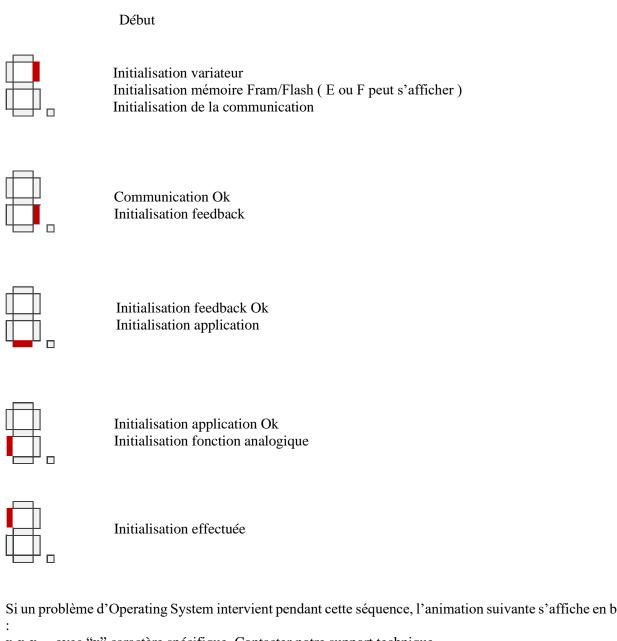

De même, le variateur ne contrôlant plus le moteur, il n'est plus en mesure de maintenir une charge verticale. Un frein dimensionné pour pouvoir arrêter l'axe en mouvement est à prévoir.

La sortie Q2 qui pilote le frein n'est pas SIL3 / PL e. Vous devez ajouter un contact NO en série, contrôlé par un module externe de sécurité, entre la sortie Q2 et le frein moteur.

D'autre part, malgré la disparition de la tension sur les entrées SAFETY, le réseau 230Vac alimente toujours le variateur et le bus continu interne de 320V est présent. Il est impératif de couper le sectionneur général de l'armoire électrique avant d'intervenir sur le moteur ou le variateur.

R2329 - 17 - SERAD SAS

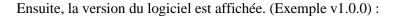
II.9 Vérification avant mise en service

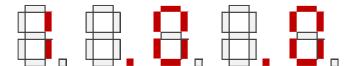

- Lorsque l'entrée Enable est désactivée, mettre sous tension l'alimentation auxiliaire 24 Vdc
- > S'assurer que sur l'afficheur de STATUS, le point clignote.
- > Mettre la puissance.
- > Si l'afficheur indique un message d'erreur, se reporter à la liste des erreurs.

AFFICHEUR STATUS 7 SEGMENTS III.

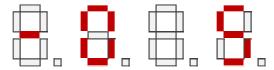
Le variateur peut afficher certaines informations via l'afficheur STATUS 7 segments

III.1 Séquence d'initialisation


À la mise sous tension, le variateur affiche la séquence d'initialisation :



Si un problème d'Operating System intervient pendant cette séquence, l'animation suivante s'affiche en boucle x-x-x... avec "x" caractère spécifique. Contacter notre support technique.


Si un clignotant s'affiche continuellement, il est nécessaire de charger un Operating System dans le variateur.

R2329 **SERAD SAS** - 20 -

Ensuite, pour un variateur équipé d'un bus de communication, l'ID de nœud configuré avec les dipswitchs est affiché (exemple ID de nœud = 5) :

III.2 SMD en fonctionnement

En cours d'exécution, le segment du milieu indique si le variateur est asservi (segment activé) ou pas (segment désactivé).

Les segments qui se trouvent en périphérie évoluent en sens horaire ou anti horaire selon la rotation du moteur.

Le point indique différentes informations suivant le nombre de clignotements "flash."

- 1 Flash : Pas de communication
- 3 Flashs: Communication USB
- 4 Flashs : Communication USB en mode Supervision (CANopen / EtherCAT sont désactivés)
- 6 Flashs: Communication Ok (CANopen / EtherCAT sont activés)

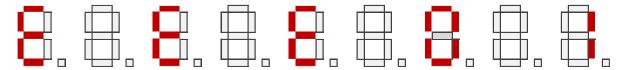
Si on exécute l'instruction Display dans une tâche (modèle "Intelligent"), son affichage est prioritaire.

III.3 Phase spécifique

Avec une certaine opération, les mémoires internes peuvent être effacées et programmées

"E" clignotant indique l'effacement de la mémoire flash (mise à jour OS / PGM)

"F" indique la programmation de la mémoire flash (mise à jour OS / PGM)


R2329 - 21 - SERAD SAS

III.4 Messages d'erreur

Suite à un événement spécifique, des erreurs peuvent être affichées.

III.4.1 Erreurs

La séquence est composée de 3 flashes avec la lettre "E", suivi de deux chiffres. Exemple pour Erreur E01 :

Code	Description
E01	Surtension DC bus : Une surtension a été détectée sur le DC bus interne. Ce défaut peut être dû à une surtension sur le réseau ou à une résistance ballast qui n'est pas suffisante (E51) ou à un paramètre de gestion du ballast erroné.
E02	Sous-tension DC Bus : Le DC Bus interne est passé en dessous de la tension minimale configurée. Cette erreur est gérée uniquement lorsque le variateur est asservi
E03	I²t moteur : Surcharge sur le moteur, causes possibles : Point dur mécanique, mauvais câblage puissance moteur, problème de feedback moteur, frein mal contrôlé.
E04	Sur-courant: Un courant supérieur au courant mesurable maximal a été détecté sur au moins une des phases du moteur. Le variateur doit rester alimenté en 24Vdc (connecteur X6) pendant 15 min avant de pouvoir être déverrouillé. Déverrouillage immédiat possible par PC avec Drive Studio en mode avancé.
E05	Court-circuit : Un court-circuit entre phases ou la mise à la terre d'une phase du moteur a été détecté. Le variateur doit rester alimenté en 24Vdc (connecteur X6) pendant 15 min avant de pouvoir être déverrouillé. Déverrouillage immédiat possible par PC avec Drive Studio en mode avancé.
E06	Température IGBT: température maximale atteinte dans le module de puissance. Il est impossible d'acquitter le défaut tant que la température n'est pas redescendue.
E07	Température moteur : température maximale atteinte dans le moteur. Il est impossible d'acquitter le défaut tant que la température n'est pas redescendue.
E08	Erreur retour position résolveur : Signaux résolveur défectueux.
E09	Température filtre réseau : température maximale atteinte dans la self du filtre réseau. Il est impossible d'acquitter le défaut tant que la température n'est pas redescendue.
E10	Erreur interne lors du calcul de trajectoire. Le cas demandé n'est pas conforme. Contacter le revendeur
E11	Erreur programme Drive Studio : une erreur a été détectée durant l'exécution des tâches (division par zéro, instruction incorrecte, problème de CAM ou de mouvement synchro).
E12	Erreur de poursuite : le variateur a dépassé le seuil d'erreur de poursuite.
E13	Erreur de paramétrage : Feedback / Auxiliaire mauvaise configuration sur Range / Ratio
E14	Erreur de lecture ou d'écriture en FRAM (variables DriveBasic) Informations complémentaires à partir de Drive Studio : Communication « En ligne », Outil « Afficher les défauts / historique »
E15	Survitesse : Vitesse supérieure à la valeur maximale définie par l'objet 0x6080 (vitesse maximale du moteur).

E16	Saturation résolveur : Les signaux Sinus / Cosinus reçus sont trop élevés.
E17	Erreur alimentation 24Vdc. Ce défaut se déclenche si l'alimentation est bruitée ou subit des creux de tension (<15V). Vérifier l'alimentation 24Vdc.
E20	Erreur de communication CANopen*: Transition de STOPPED, INIT ou RESET EtherCAT MPC: Le SMD n'accepte que le mapping EtherCAT PDO complet. PROFINET*: Module Profinet erreur interne ou d'exception (*Note: erreur retournée seulement si l'objet 0x6007 -Abort Connection Option Code- est différent de "NO ACTION")
E21	Avec le MPC Serad: Se produit lorsque un Axis On est demandé alors que l'entré E1 Enable n'est pas active.
E23	Erreur de communication sur le bus. CANopen: • Erreur sur la supervision (LifeGuard / Heartbit event) • Erreur CAN BusOff PROFINET: • Perte de communication avec le maître PROFINET EtherCAT MPC: Trame cyclique non reçue dans les temps (Note: erreur retournée seulement si l'object 0x6007 -Abort Connection Option Code- est different de "NO ACTION") EtherCAT DS402: Problème remonté par le chip EtherCAT. N = AlStatusCode
E24	Erreur retour position codeur : codeur Tamagawa, problème de communication ou problème interne
E25	Chien de garde : Le variateur a redémarré en raison de l'expiration du délai du chien de garde
E26	Erreur retour de position Biss / EnDat. Problème de communication, de CRC, d'initialisation.
E27	Erreur du codeur incrémental/Effet Hall. Problème de consistance. Vérifier le câblage.
E28	Alimentation capteur de position : Problème de détection du capteur de position (codeur Tamagawa, Résolveur, Endat). Cela peut être dû à un court-circuit ou une surintensité sur l'alimentation 5Vdc.
E29	La configuration des boucles d'asservissement (0x2111.B, 0x2111.C, 0x2111.D) utilise un capteur position moteur non activé. (0x2120.1, 0x2121.1, 0x2122.1, 0x2130.1).
E30	Erreur lors de l'exécution d'un profil de came
E51	Surcharge résistance de freinage : Ce défaut peut être dû à une résistance qui n'est pas suffisante ou à un paramètre de gestion du ballast erroné. Si aucune résistance de freinage configurée (Ton = 0) cela veut dire qu'il faut soit mettre une résistance de freinage, soit configurer une décélération moteur moins forte.

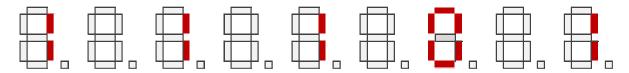
III.4.2 Problèmes Hardware

La séquence est composée de 3 flashes avec la lettre "H", suivi de deux chiffres. Si ces erreurs se produisent, contacter le fabricant.

Exemple pour Hardware H01:

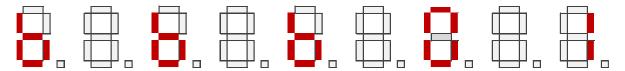
Codo	Description
Code	Description
H01	Module mémoire FRam non détecté.
H02	Module mémoire Flash non détecté.
Н03	Problème d'écriture dans le module mémoire Flash.
H04	Asic EtherCAT non détecté.
H05	Mémoire Eeprom Asic EtherCAT non détectée.
H06	Module mémoire flash détecté comme vide. La copie de l'OS vers le module de mémoire flash a eu lieu, mais la vérification du CRC est mauvaise.
Н07	Erreur de signature matérielle vide. (Aucune signature matérielle dans DSP Flash). Le retour usine pour la programmation de signature est nécessaire (erreur non effaçable).
H08	Erreur de signature matérielle corrompue (mauvais CRC). Le retour usine pour la programmation de signature est nécessaire (erreur non effaçable).
Н09	Erreur de signature matérielle dans le module mémoire. Le retour usine pour la programmation de signature est nécessaire (erreur non effaçable).
H10	Erreur interne. Contacter le fabricant.
H11	La carte de communication du variateur ne correspond pas à la valeur du paramètre « Type de bus ». A partir de DriveStudio, modifier la valeur du paramètre « Type de bus » pour correspondre à la configuration matérielle du variateur.
H12	Erreur interne. Pas de signal d'interruption sur le module de communication. Contacter le fabricant.
H13	Erreur interne. Processeur DSP non compatible avec le type de feedback (Biss, EnDat, SSI). Contacter le fabricant.
H14	Erreur interne. Accès simultané à la mémoire. Contacter le fabricant.

III.4.3 Avertissements


La séquence est composée de 3 flashes avec la lettre "A" suivi de deux chiffres. Exemple pour avertissement A01 :

Code	Description
A01	Problème de paramètres en mémoire : au moins un paramètre et/ou variable DriveBasic a été restauré à sa valeur d'usine. Informations complémentaires à partir de Drive Studio : Communication « En ligne », Outil « Afficher les défauts / historique »
A02	La batterie du codeur Tamagawa est trop faible : le codeur absolu multi-tours a détecté un niveau de batterie trop faible. La position absolue peut ne pas être cohérente après la mise sous tension. Il est nécessaire de changer la batterie.
A03	ENABLE demandé alors que le bus DC interne n'a pas atteint le niveau suffisant (seuil de Soft Start) pour déclencher le démarrage.
A04	Entrée sécuritaire 1 : le canal de sécurité STO A s'est déclenché.
A05	Entrée sécuritaire 2 : le canal de sécurité STO B s'est déclenché.

III.4.4 Informations


La séquence est composée de 3 flashes avec la lettre "I", suivi de deux chiffres. Exemple pour Info I01 :

Code	Description
I01	Mode DS-402 : Mauvaise transition demandée
I02	EtherCAT : Une erreur EtherCAT détecté et remonté dans le registre AL Status du chip EtherCAT

III.4.5 Erreur du bootloader

La séquence est composée de 3 flashes avec la lettre "b", suivi de deux chiffres. Exemple pour erreur boot b01 :

Code	Description
b01	Erreur bootloader : La mémoire Flash DSP est vide, le module de mémoire flash n'a pas été trouvé. Vous ne pouvez pas charger de programme.
b02	Erreur bootloader : Erreur mémoire Flash DSP, Impossible d'activer bank1
b03	Erreur bootloader : Erreur mémoire Flash DSP, la vérification d'effacement a échouée
b04	Erreur bootloader : Erreur mémoire Flash DSP, la programmation a échouée
b05	Erreur bootloader : Erreur mémoire Flash DSP, la programmation de l'en-tête a échouée

IV. REVISION

R1821	Version initiale
R1837	Ajout erreur Hardware H10
R1840	Ajout informations sur l'afficheur 7 segments
R1844	Complément sur l'afficheur 7 segments à propos de l'OS
R1851	Ajout code erreur pour PROFINET
	Ajout valeur du courant de fuite à la terre
R1908	Indication des connecteurs X5-IN et X5-OUT sur la vue dessus
	Entrées sécuritaires : codes Erreurs E21/E22 remplacés par codes Warnings A04/A05
R1915	Ajout description de l'erreur E10
R1925	Ajout erreur EtherCAT MPC dans E20 et E23
R1931	Ajout erreur E13
	Correction brochage Pulse & Direction sur connecteur X9
R1939	Ajout Erreur E26
R1941	Ajout de l'erreur H11
R1945	Modifications hardware sur modèles SMD230xxxxxxA:
	Connecteur X2 – COM : port série RS485 au lieu de RS232
	Connecteur X4 – SAFE – ANA : ajout d'une entrée analogique 0 10 V
	Connecteur X9 – MASTER : modification du pin assigment des signaux Z/, B/, Direction/
R1950	Ajout erreur E27
R2002	Ajout erreur E21
R2009	Informations complémentaires dans la description des erreurs E04 et E05
R2021	Ajout du codeur incrémental
R2038	Ajout erreur H14 et complément sur erreur A01, ajout E14
R2042	Précision sur les codeurs
	Ajout dissipation thermique
R2104	Ajout d'information sur les caractéristiques des entrées TOR
R2143	Ajout recommandation tresse de blindage sur le câble feedback
R2221	Caractéristique en température
R2230	Correction du type sur pin +5Vdc Incrémental du connecteur X8
R2329	Ajout complément d'informations dans les messages d'erreurs.